feat: normal distribution
This commit is contained in:
@@ -16,5 +16,5 @@ if __name__=="__main__":
|
||||
# t_strings()
|
||||
# test_math_module()
|
||||
# test_probability_module()
|
||||
# test_statistics_module()
|
||||
test_statistics_module()
|
||||
# test_exercises_module()
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from math import sqrt, pi, e
|
||||
from math import sqrt, pi, e, exp
|
||||
from scipy.stats import norm
|
||||
|
||||
def mean(list):
|
||||
return sum(list) / len(list)
|
||||
@@ -51,9 +52,14 @@ def sample_standard_deviation(difference_list):
|
||||
def standard_deviation(difference_list, is_sample):
|
||||
return sample_standard_deviation(difference_list) if is_sample else population_standard_deviation(difference_list)
|
||||
|
||||
## Normal distribution
|
||||
# PDF generates the Normal Distribution (symetric arround the mean)
|
||||
def probability_density_function(x: float, mean: float, standard_deviation: float):
|
||||
return (1 / (standard_deviation * sqrt(2 * pi))) * (e ** ((-1/2) * (x - (mean ** 2)) / standard_deviation))
|
||||
def normal_probability_density_function(x: float, mean: float, standard_deviation: float):
|
||||
return (1.0 / (2.0 * pi * standard_deviation ** 2) ** 0.5) * exp(-1.0 * ((x - mean) ** 2 / (2.0 * standard_deviation ** 2)))
|
||||
|
||||
def normal_cumulative_density_function(x, mean, difference_list):
|
||||
std_dev = standard_deviation(difference_list, False)
|
||||
return norm.cdf(x, mean, std_dev)
|
||||
|
||||
|
||||
def test_statistics_module():
|
||||
@@ -72,3 +78,7 @@ def test_statistics_module():
|
||||
del sample[1]
|
||||
print("The sample variance for a population is", sample_variance(sample))
|
||||
print("The standard deviation for a population is", standard_deviation(sample, True))
|
||||
|
||||
print("== Normal distribution ==")
|
||||
print(">> The probability_density_function for x = 1 over the example data is {0}".format(normal_probability_density_function(1, sum(differences) / len(differences), standard_deviation(differences, False))))
|
||||
print(">> The probability for observing a value smaller than 1 is given by the cumulative density function and it is: {0}".format(normal_cumulative_density_function(1, sum(differences) / len(differences), differences)))
|
||||
|
||||
Reference in New Issue
Block a user